Thanks for supporting local! Our online shop is open & shipping orders. 

Search

Get Professional Support

BBC Micro:bit

Robotics

On sale items!

Announcement


Check out our latest news to find out more about events, opportunities and partnerships.

Esmes' Electronics


Esmes' Electronics is a simple introduction to using the micro:bit written by a year 5 student.

Troys' tutorials


Learn with Troy by asking for support and, he will post a tutorial here to benefit all of our visitors. Free advice!

Feature teacher


Be inspired by some of our favorite teachers using our products.

Get professional support


Contact us now to request your own tutorial or learning resource.

This section doesn’t currently include any content. Add content to this section using the sidebar.

Image caption appears here

Add your deal, information or promotional text

ADA3650

Adafruit INA219 FeatherWing

The INA219 FeatherWing makes power-monitoring problems a thing of the past. Instead of struggling with two multimeters, you can just use the handy INA219B chip on this breakout to both measure both the high side voltage and DC current draw over I2C with 1% precision. Works with any and all Feathers! Communicates over I2C so its super-simple to use, you can even change the I2C address to have up to 4 of these Wings on one Feather.

Many current-measuring devices are only good for low side measuring. That means that unless you want to get a battery involved, you have to stick the measurement resistor between the target ground and true ground. This can cause problems with circuits since electronics tend to not like it when the ground references change and move with varying current draw. This chip is much smarter - it can handle high side current measuring, up to +26VDC, even though it is powered with 3.3V. It will also report back that high side voltage, which is great for tracking battery life or solar panels.

A precision amplifier measures the voltage across the 0.1 ohm, 1% sense resistor. Since the amplifier maximum input difference is ±320mV this means it can measure up to ±3.2 Amps. With the internal 12 bit ADC, the resolution at ±3.2A range is 0.8mA. With the internal gain set at the minimum of div-8, the max current is ±400mA and the resolution is 0.1mA. Advanced hackers can remove the 0.1 ohm current sense resistor and replace it with their own to change the range (say a 0.01 ohm to measure up 32 Amps with a resolution of 8mA)

We have a detailed tutorial for the INA219 that will do all the gain, range and math for you - just plug and go with Arduino or CircuitPython!

https://www.youtube.com/embed/ITP_59hw71A?start=135

 

2 items left

How We Give Back

We believe in giving back; We are proud to give 1% of all orders directly to environmental not for profit groups whose focus is the protection, preservation and restoration of our planet. This means every time you purchase from us, 1% goes directly to an environmental cause.

Search